Part Number Hot Search : 
CN303 PP1800SA 64000 2SD2037 BSS84TC A3120 HYS64 2SC4793
Product Description
Full Text Search
 

To Download STV2001 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 STV2001
I2C SINGLE FREQUENCY DEFLECTION PROCESSOR AND 120 MHz RGB PREAMPLIFIER
TARGET SPECIFICATION
FEATURES
Horizontal deflection
s s s
s
s
s
s
s s s
s
s
Single Frequency, Self Adaptive Oscillator. TTL compatible positive going sync. Chip does not accept sync on RGB or any video signal. I2C controlled: H-position, pin cushion, keystone, parallelogram, side pin balance. I2C controlled EW corner : top and bottom corrections. I2C controlled corner: top and bottom phase corrections. EW output I2C controlled H-amplitude DC controlled H-width breathing compensation with I2C controlled gain (0.5x to 2x). Xray shut-down on ABL, H output latch, reset by power OFF/ON. Soft start on H-duty. Vertical ramp generator. Wide range AGC loop. TTL compatible positive going sync, no extra pulses. I2C controlled vertical position. I2C controlled S linearity correction. DC controlled height breathing compensation with I2C controlled gain (0.5X TO 2X). Vertical dynamic focus output with fixed amplitude (1Vpp). 3-Channel 120MHz bandwidth video amplifier. 3.5ns typical rise and fall time at 2.5VPP. I2C controlled individual RGB contrast (8bit)>8db I2C controlled overall brightness. Activation of ABL results in contrast gain decrease.
s
s
Gain window (1.5X) controlled by input pulse and I2C. Pulse height controls the gain variation from 1x to 1.5x. 0.514V typical video input signal for normal display. I2C controlled contrast (7bits) update during vertical retrace time. I2C interface (slave) 100kHz max. All I2C controlled DAC are 7 bits, except RGB gain. Power on reset on 5 V (VDD). 5 V/10.5 V dual supply. Max power consumption: 1.2W
I2C main features
s s
s
Supply voltage & power
s s
DESCRIPTION
The STV2001 is an I2C-controlled monolithic integrated circuit assembled in a TQFP44 plastic package. It combines both a deflection block (horizontal and vertical, single frequency with very powerful geometry correction) and a 120MHz RGB pre-amplifier.
Vertical deflection
s s s
s s s
s
Video preamplifier
s s s
TQFP44/SLUG DOWN ORDER CODE :
s s
Version 1.2
May 2000
This is preliminary information on a new product now in development. Details are subject to change without notice.
1/46
1
TABLE OF CONTENTS
1 - PIN CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 - PIN DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 3 - BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 4 - ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 5 - THERMAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6 - SYNC INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 7 - I2C READ/WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 8 - HORIZONTAL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 9 - VERTICAL SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 10 - VIDEO PRE-AMP SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 11 - LOGIC SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 12 - I2C BUS ADDRESS TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 13 - TYPICAL OUTPUT WAVEFORMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 14 - OPERATING DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 14.1 -GENERAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 14.1.1 -Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 14.1.2 -I2C Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 14.1.3 -Write Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 14.1.4 -Read Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 14.1.5 -Sync Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 14.1.6 -IC Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 14.1.7 -Sync Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 14.1.8 -Sync Processor Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 14.2 -HORIZONTAL PART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 14.2.1 -Internal Input Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 14.2.2 -PLL1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 14.2.3 -PLL2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 14.2.4 -Output Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 14.2.5 -X-RAY Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 14.3 -VERTICAL PART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 14.3.1 -Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 14.3.2 -I2C Control Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 14.3.3 -Basic Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 14.3.4 -Geometric Corrections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 14.3.5 -E/W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 14.3.6 -Dynamic Horizontal Phase Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 14.3.7 -Vertical Dynamic Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 14.3.8 -Corner Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 14.3.9 -Horizontal Breathing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 14.3.10 -Vertical Breathing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 14.4 -GENERAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 14.4.1 -Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 14.4.2 -Contrast Adjustment (7 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 14.4.3 -ABL Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 14.4.4 -Brightness Adjustment (6 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 14.4.5 -Drive Adjustment (3 x 8 bits) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 . . . 33 . 14.4.6 -Output Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 14.4.7 -Bright Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2/3
2
14.4.8 -Blanking Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5 -GENERAL CONSIDERATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5.1 -POR (Power On Reset) - Subad. 11-D8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5.2 -Supply Voltage Threshold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5.3 -Video Off (I2C control) - Subad. 00-D8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5.4 -Vertical Output Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14.5.5 -X-Ray, Set Operation - Subad. 09-D8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 - INTERNAL SCHEMATICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 - PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35 36 36 36 36 36 36 37 45
3/3
STV2001
1 - PIN CONNECTIONS
FILTER FC1
Hin Vin Vref VAGCCAP VGND VCAP Vout VRB VAVcc OUT1 AGND
44 43 42 41 40 39 38 37 36 35 34 33 1 32 2 31 3 30 4 29 5 28 6 27 7 26 8 25 9 10 24 11 23 12 13 14 15 16 17 18 19 20 21 22
VBCAP PLL2C HGND Hfly Href Hout
Co Ro PLL1F
HDGND LGND SAVcc SCL SDA VDD(5V) EWout FCAP HBRTHin VBRTHin VFOCUS
OUT2 PGND OUT3
4/46
3
PVCC GAINWIN IN1 VBDC IN2 ABLin IN3 VFLYin
STV2001
2 - PIN DESCRIPTION
Pin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 Name Hin Vin Vref VAGCCAP VGND VCAP Vout VRB VAVcc OUT1 AGND OUT2 PGND OUT3 PVcc GAINWIN IN1 VBDC IN2 ABLin IN3 VFLYin VFOCUS VBRTHin HBRTHin FCAP EWout VDD SDA SCL SAVcc LGND HDGND Hout Href Hfly HGND PLL2C VBCAP PLL1F Ro Co FC1 FILTER Function Horizontal Sync Input Vertical Sync Input Vertical Section Reference Voltage Vertical AGC Loop Capacitor Vertical Section Ground Vertical Sawtooth Generator Capacitor Vertical Output Vertical Ramp Filter Video Section Analog Supply (10.5V typ) Video Output 1 Video Analog Ground Video Output 2 Video Section Power Ground Video Output 3 Video Section Power Supply (10.5V typ) Gain Window Input Video Input 1 Vertical Blanking Output with DC Level adjusted by DAC Video Input 2 Video Automatic Beam Current Compensation Input Video Input 3 Vertical Fly Back Pulse Input Vertical Dynamic Focus Output Vertical Breathing DC Input Horizontal Breathing Compensation DC Input Filter Capacitor EW Output Bus, Scanning Logic and Video Logic Supply (5V typ) I2C Data Input I2C Clock Input Scanning Section Analog Supply (10.5Vtyp) Bus and Scanning Power Ground H Driver Output Ground Horizontal Driver Output, open collector Horizontal Section Reference Voltage Horizontal Flyback Input, Positive Horizontal Section Ground PLL2 Loop Filter PLL2 Top Comparator Filter PLL1 Loop Filter Horizontal Oscillator Resistor Horizontal Oscillator Capacitor PLL1 Filter Capacitor Horizontal Filter Capacitor (HPOS)
5/46
6/46 PLL1F 40 SAVCC 31 Href 35 Vref 3 Vpos Vamp Scorr VOSC RAMP Generator Href Vref Phase Freq Comp VCO Phase Comp Phase Shifter HOUT Buffer Safety FILTER FC1 Ro 44 43 41 Co HFly 42 36 PLL2C 38 VBCAP 39 Hout 34 HDGND 33 Hin 1 Vin 2 HGND 37 VGND 5 VCAP 6 VAGCCAP 4 VRB 8 Vout 7 VFOCUS 23 SDA 29 SCL 30 VDD 28 LGND 32 IN1 17 Hsync Clamp VDF I2C BUS DECODER Contrast Corner Phase SPB X2 Geometry Tracking X2 EWPCC EW OUTPUT 27 EWout 26 FCAP H Breathing VFBack HFly Hsync Vsync 22 VFLYin KeyBal X EW Corner LATCHES & DACs Brightness Drive BPCP Output Stage EHTcomp AMP 25 HBRTHin 24 VBRTHin 9 VAVCC 10 OUT 1 11 AGND 15 PVCC IN2 19 GAINWIN 16 Gain WIndow IN3 21 ABL 12 OUT 2 20 ABLin 13 PGND 14 OUT 3
3 - BLOCK DIAGRAM
STV2001
+
+ KEYST
Blanking
18 VBDC
STV2001
STV2001
4 - ABSOLUTE MAXIMUM RATINGS
Symbol SAVcc VAVcc PVcc Vdd VESD Tstg Tj Toper Parameter Scanning Section Analog Supply Voltage Video Section Analog Supply Voltage Supply Voltage for Video Pre-Amp Section Logic Section Supply Voltage ESD susceptibility HBM model 100pF & 1.5k EIAJ Norm 200pF & 0 Storage Temperature Junction Temperature Operating Temperature (Device ambient) Value 13.5 13.5 13.5 5.5 2 300 -40 to 150 150 0 to 70 Unit V V V V kV V
oC o o
C C
5 - THERMAL DATA
Symbol RTH(j-a) Parameter Junction to Ambient Thermal Resistance (MAX) Value 46 Unit
oC/W
6 - SYNC INPUT
Operating Conditions (V DD = 5V, Tamb = 25C)
Symbol HSVR MinD Mduty VSVR VSW VSD Parameter Voltage on Hin Min Hin pulse duration Max Hin Duty Cycle Voltage on Vin Min Vin pulse duration Max Vin Duty Cycle 0 5 15 Test Conditions Min 0 0.7 25 5 Typ Max 5 Unit V us % V us %
Electrical Characteristics (V DD = 5V, Tamb = 25C)
VINTH RIN Horizontal & Vertical Input Logic Level Horizontal & Vertical Pull-Up Resistor Low Level High Level 0.8 2.2 200 V V k
7/46
STV2001
7 - I2C READ/WRITE
Electrical Characteristics (V DD = 5V, Tamb = 25C)
Symbol FSCL TLOW THIGH VINL VINH VACK Parameter Maximum Clock Frequency Low Period of the SCL Clock High Period of SCL Clock SDA & SCL Input Low Level Voltage SDA & SCL Input High Level Voltage Acknowledge Output Voltage on SDA input with 3mA 3 0.4 1.3 0.6 1.5 Test Conditions Min Typ Max 100 Unit kHz us us V V V
8 - HORIZONTAL SECTION
Operating Conditions
Symbol VCO Ro(min) Co(min) Fmax Minimum Oscillator Resistor Minimum Oscillator Capacitor Maximum Oscillator Frequency 6 390 150 k pF kHz Parameter Test Conditions Min Typ Max Unit
OUTPUT SECTION IHFB IHOUT Horizontal FlyBack Input Maximum Current Horizontal Drive Output Maximum Sink Current 5 15 mA mA
Electrical Characteristics (V DD = 5V, Tamb = 25C)
Symbol Parameter Test Conditions Min Typ Max Unit SUPPLY AND REFERENCE VOLTAGES Vcc Vdd Icc Idd VHREF VVREF IHREF IVREF Supply Voltage Supply Voltage Supply Current Supply Current Horizontal Reference Voltage Vertical Reference Voltage Horizontal Reference Maximum Source Current Vertical Reference Maximum Source Current I=-2mA I=-2mA 7.4 7.4 9.5 4.5 10.5 5 30 5 8 8 8.6 8.6 5 5 11.5 5.5 V V mA mA V V mA mA
8/46
STV2001
Operating Conditions
Symbol 1st PLL SECTION Vclamp VVCO AVCO HPHASE VPMIN VPTYP VPMAX IPLL1-UL IPLL1-L1 IPLL1-L2 fO dfo/dT VCO clamp Voltage range VCO clamp Voltage, at POR VCO Gain Horizontal Phase Adjustment Range Horizontal Phase Setting Minimum Typical Maximum PLL1 Charge Pump Current Unlocked Locked Locked Free Running Frequency, no input at POR, lower clamp voltage at max. Free Running Frequency Thermal Drift VHREF =8V VHREF =8V Ro=4868, Co=820pF, dF/dV=1/11RoCo % of Horizontal Period SubAdd 07 X1111111 X1000000 X0000000 Sub-Address 11 x1xx xxxx x0xx xxxx Ro=4868, Co=820pF +/-40 +/-1 300 86 -150 A mA A kHz ppm/oC 3.0 3.8 23 +/-10 2.8 3.4 4.0 3.8 V V kHz/V % V V V Parameter Test Conditions Min Typ Max Unit
2nd PLL SECTION & HORIZONTAL OUTPUT SECTION VTHFB JitterH HDC Flyback Input Threshold Voltage Horizontal Jitter Horizontal Drive Output Duty Cycle (Ratio of Power Transistor OFF time to Period) Internal Clamp Level on PLL2 Filter Threshold Voltage to Stop H-Out, V-Out, Reset ABL when VccVphi2 VSCinh VsatHD
9/46
STV2001
9 - VERTICAL SECTION
Symbol Parameter Test Conditions Min Typ Max Unit
Electrical Characteristics (V DD = 5V, Tamb = 25C)
VERTICAL RAMP SECTION VRBOT VRTOP VRTOPF TVDIS FFRV ASFR RAFD RLIN Voltage at Ramp Bottom Point Voltage at Ramp Top Point with Sync VVREF=8V VVREF=8V 2 5 VRTOP0.1 70 100 50 200 0.5 165 V V V s Hz Hz ppm/Hz %
Voltage at Ramp Top Point without Sync VVREF=8V Vertical Sawtooth Discharge Time Vertical Free Running Frequency (S correction inhibited) Auto-Sync Frequency Range Ramp Amplitude Drift Versus Frequency at Maximum Vertical Amplitude Ramp Linearity at Vcap pin with S Correction inhibited Vertical Position Adjustment Voltage with VOUT mean value COSC=150nF COSC=150nF COSC=150nF COSC=150nF 50Hz 165Hz 2.5V < VOSC < 4.5V Sub-Add=09 X0000000 X1000000 X1111111 Sub-Add=08 10000000 11000000 11111111
VPOS
3.65
3.2 3.5 3.8 2.25 3 3.75 +/-5 2
3.3
V V V V V V mA V % %
VOR
Vertical Output Peak to Peak Voltage
2.5
3.5
IVOUT VVRB
Vertical Output Maximum Current Vertical Ramp Filter Voltage Max Vertical S-Correction Amplitude S-Correction inhibited, DV/Vpp at TV/4 S-correction Maximum, DV/Vpp at 3TV/4 Sub-Add 0A 0XXXXXXX 11111111
dVS
-4 +4
10/46
STV2001
Symbol
Parameter
Test Conditions
Min
Typ
Max
Unit
EAST/WEST FUNCTION (available without feedback connection) DC Output Voltage with: -Typical VPOS and Keystone inhibited -External driver connected as unity gain buffer DC Output Voltage Thermal Drift (Non-test Parameter) Parabola Amplitude with: -Max VAMP -Typ VPOS -Keystone inhibited Parabola Amplitude Function of VAMP Control (tracking between VAMP & EW) with: -Typ VPOS=typ. -Keystone=typ. -EW Amplitude=typ. Keystone Adjustment Capability with: -VPOS=typ. -EW= inhibited -Vertical Amplitude= Max. Intrinsic Keystone Function of VPOS Control (tracking between VPOS and EW) with : -EW Amplitude= Max -Vertical Amplitude=Max A/B Ratio B/A Ratio Corner Adjustment capability with : -VPS=typ, -EW = inhibited -VAMP = max -HSize = Min -HBreath>VREF -Keystone = inhibited Corner Adjustment capability with : -VPS=Typ, -EW = inhibited -VAMP = Max -HSize = Min -HBreath>VREF -Keystone = inhibited Sub-add 0C 11111111 11000000 10000000 Sub-address 08
EWDC
2.0
V
TDEWDC
100
ppm/oC
EWPARA
1.0 0.5 0
V V V
EWtrack
10000000 11000000 11111111 Sub-address 0B 10000000 11111111 Sub-address 09
0.18 0.35 0.57
V V V
KeyAdj
0.2 0.2
Vpp Vpp
KeyTrack
X0000000 X1111111 Sub-address 04
0.52 0.52
EW Corner Top
1111 1111 1100 0000 1000 0000 Sub-address 15
+1.25 0 -1.25
Vpp Vpp Vpp
EW Corner Bottom
1111 1111 1100 0000 1000 0000
+1.25 0 -1.25
Vpp Vpp Vpp
11/46
STV2001
Symbol
Parameter
Test Conditions
Min
Typ
Max
Unit
INTERNAL DYNAMIC HORIZONTAL PHASE CONTROL Side Pin Balance Parabola Amplitude with: -VAMP=Max, -VPOS=typ. -Parallelogram inhibited Side Pin Balance Parabola Amplitude function of VAMP Control (tracking between VAMP & SPB) with -SPB=Max -VPO=typ. -Parallelogram= inhibited Parallelogram Adjustment Capability with: -VAMP=Max -POS =Typ -SPB=Max Intrinsic Parallelogram Function of VPOS Control (tracking between VPOS and DHPC) with -VAMP=Max -SPB=Max -Parallelogram= inhibited A/B Ratio B/A Ratio Sub-add 0E
SBPpara
11111111 10000000 Sub-add 08
+1.4 -1.4
%TH %TH
SPBtrack
10000000 11000000 11111111 Sub-add 0F
0.5 0.9 1.4
%TH %TH %TH
ParAdj
11111111 10000000 Sub-add 09
+1.4 -1.4
%TH %TH
Partrack
X0000000 X1111111
0.52 0.52
VERTICAL BREATHING COMPENSATION VBRrng Input DC Breathing Control Range Vertical Size Compensation Variation of V output vs full range of VBRrng Sub-address 14 XX00 0000 X100 0000 XX11 1111 1 -5 -20 10.5 V % % %
VSC
VERTICAL DYNAMIC FOCUS OUTPUT VDFDC VDFamp DC Output Level RL=10k VDF Parabola Amplitude with: Vamp = typ VPOS = typ. Parabola Polarity at Output = Inverted "U" 4 1 V Vpp
VFOCPOL
VERTICAL FLYBACK INPUT VFLYTH VFLYINH Vertical Flyback Threshold Inhibition of Vertical Flyback input (id pulse in action instead of VFlyback) 6.5 1 V V
HORIZONTAL SIZE CONTROL Hsize Hsize output DC voltage sitting on top of EWDC=2.0V sub-add 0D X0000000 X1111111 0 2.4 V V
12/46
STV2001
Symbol
Parameter
Test Conditions
Min
Typ
Max
Unit
HORIZONTAL BREATHING COMPENSATION HBRrng Breathing input DC Control Range Horizontal size compensation, EW DC voltage variation under full range of HBRrng Sub-address 12 X000 0000 X100 0000 X111 1111 1 0.2 0.8 10.5 V V V
HSC
CORNER PHASE CORRECTION Corner Phase Top Adjustment with: Vamp = max Vpos = Typ. SPB = OFF Parrallelogram = OFF Corner Phase Bottom Adjustment with: Vamp = max Vpos = Typ. SPB = OFF Parrallelogram = OFF Sub-address 05
Corner Phase Top
1000 0000 1111 1111 Sub-address 06
-2.8 +2.8
% %
Corner Phase Bottom
0000 0000 0111 1111
-2.8 +2.8
% %
10 - VIDEO PRE-AMP SECTION
Symbol Parameter Test Conditions Min Typ Max Unit
DC Electrical Characteristics (VAVCC = PVCC = 10.5V, Tamb = 25oC)
VAVcc PVcc IS VIN VOUT VBlack Video Section Analog Supply Voltage Power Section Supply Voltage Supply Current of VAVcc & PVcc Video Input Voltage Amplitude Typical Output Voltage Range Output (Black level) 0.5 1.5
o
9.5 9.5
10.5 10.5 63 0.7
11.5 11.5
V V mA
1 7
Vpp V V
AC Electrical Characteristics (VAVCC = PVCC = 10.5V, CL = 5pF, RL = 1K, Tamb = 25 C)
Symbol AV Parameter Maximum Gain Condition Max Contrast and Drive I2C Gainwin = 1 VIN = 0.7Vpp Contrast and Drive at POR Min Typ 18 Max Unit dB
CAR DAR GM
Contrast Attenuation Range Drive Attenuation Range Gain Match
30 30
dB dB dB
VIN = 0.7Vpp, VOUT = 4Vpp, Contrast and Drive= 0.87Max VIN=0.7Vpp, VOUT = 2.5Vpp, Contrast and Drive = 0.87Max At -3dB
+-0.1
BW
Large Signal Bandwidth
120
MHz
13/46
STV2001
Symbol DIS
Parameter Video Output Distortion
Test Conditions f=1MHz, VIN=1Vpp, VOUT = 1Vpp VIN = 0.7Vpp, VOUT =2.5Vpp,Contrast and Drive=0.87Max CLOAD=5pF
Min
Typ 0.3
Max
Unit %
tR, tF
Video Output Rise and Fall Time
3.5
4
ns
dVo BRT RL Tsample Thold CT
Overshoot of output with respect to actual output amplitude Brightness max DC level Brightness min DC level Equivalent Load on Video Output Hold time Sample time Crosstalk Between Video Channels
5 2.5 0
7
% V V k ms s
Tj1
44
dB
ABL COMPENSATION RABL GABL THABL ABL Input resistor ABL minimum Attenuation ABL maximum Attenuation ABL latch function activation threshold (High beam current detection) VABL=5.3V VABL=2.8V 0 10 0 12 1 k dB dB V
GAIN WINDOW VINL VINH Input Low Level Voltage Input High Level Voltage Contrast Gain Increase during High Input VIN = 1.5V VIN = 5.0V Total Delay Time 1.5 0.7 V V
Gain
1 1.5 100
V/V V/V ns
TD
14/46
STV2001
11 - LOGIC SECTION
DC Electrical Characteristics (VAVCC = PVCC = 10.5V, Tamb = 25oC)
Symbol VBDC OUTPUT SECTION Blanking output high voltage VBDC Blanking output low voltage I2C adjustable Output sink current Vertical blanking time (start by VSync 2 and by VFly) sub-add10 1X000000 1X111111 7 1 4.5 0.3 V V V mA Parameter Condition Min Typ Max Unit
IBLK TBLK
SUPPLY VOLTAGE THRESHOLD VTHPD1 VTHPD2 Supply first threshold voltage Supply second threshold voltage 8.5 6.9 V V
15/46
STV2001
12 - I2C BUS ADDRESS TABLE
[0] denotes POR value, X denotes unused data bit and must be set to 0.
D8 D7 D6 WRITE MODE (SLAVE ADDRESS= 8C) Video 00 1, on [1] [0] [0], off 01 02 03 [1] [1] [1] EWCorner Top/Bottom 0 off [1], on Corner phase Top/Bottom 1, on [0],off Ipump2 1, high [0], low Hout 0, off [1], on Vramp 0, off [1], on Xray 1, reset [0] S Select 1, on [0], off EW Key 0, off [1], on EW Select 0, off [1], on x SPB Sel 0, off [1], on Parallelog 0, off [1], on VBDC 1, on [0], off [0] [0] [0] [1] [1] [1] D5 D4 Contrast [1] [1] [1] [1] [1] Drive 1 [0] Drive 2 [0] Drive 3 [0] EW Corner Top [0] Corner Phase Top [1] [0] [0] [0] Corner Phase Bottom [1] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [1] [1] [1] [1] [0] [0] [0] [0] [0] [0] [0] D3 D2 D1
04
[1]
[0]
[0]
[0]
[0]
[0]
05
06
Horizontal Phase Adjustment [1] [0] [0] [0] [0] [0] [0]
07
Vertical Ramp Amplitude Adjustment [1] [0] [0] [0] [0] [0] [0]
08
Vertical Position Adjustment [1] [0] [0] [0] S Correction [1] [0] [0] [0] Keystone [1] [0] [0] [0] EW Amplitude [1] [1] [1] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0] [0]
09
0A
0B
0C 0D 0E
Horizontal Amplitude [0] [0] Side Pin Balance [0] Parallelogram [0]
0F
[1] Gainwin [0], 1X 1, 1.5X
[0]
[0]
[0]
[0]
[0]
[0]
Vertical Blanking DC level [1] [1] [1] [1] [1] [1]
10
16/46
STV2001
11 12 13 14 15
D8 POR [0], off 1, reset
D7 Ipump 1, 1mA [0], 0.3mA [1]
D6 [1] [0] x [1]
D5 [0] [0] x [0]
D4 D3 Brightness [1] [1]
D2 [0]
D1 [1] [0] [0] [0] [0]
x
x
[1] [0] [0] READ MODE (SLAVE ADDRESS = 8D) Xray Hlock 1, on 0, lock [0], off [1], unlock Note: Both EW Corner Top and EW Corner Bottom are switched ON/OFF by reg (sub-address 04/D8).
HEHT Comp Gain [0] [0] [0] PLL1 filter voltage clamp (FVC) [0] [0] [0] VEHT Comp Gain [0] [0] [0] EWCorner Bottom [0] [0] [0]
17/46
STV2001
Figure 1. EW Output Referred Voltage
B EWPARA A
EWDC Figure 2. Dynamic Horizontal Phase Control Output
EWPARA A
B
DHPC DC
SPBPARA
Figure 3. Keystone Effect on EW Output (PCC Inhibited)
Keyadj
Figure 4. Vertical Dynamic FOcus Output
4Vdc
18/46
STV2001
13 - TYPICAL OUTPUT WAVEFORMS
Function Sub Address Pin Byte Specification Effect on Screen
1000 0000 Vertical Size
2.25V
3.75V 1111 1111
Vertical Position
x000 0000 x100 0000 x111 1111
VOUTDC = 3.2 V VOUTDC = 3.5 V VOUTDC = 3.8 V
Vertical S Linearity
0000 0000 Inhibited V 1111 1111
Vpp
Keystone, EW Inhibited 2V EW Corner Top (Symmetrical) 1000 0000 1.25Vpp
1111 1111
1.25Vpp
2V
19/46
STV2001
Function
Sub Address
Pin
Byte Keystone, EW Inhibited
Specification
Effect on Screen
2V
EW Corner Bottom (Symmetrical) 1000 0000
1.25Vpp
1111 1111
1.25Vpp
2V
Keystone, EW Inhibited
2V
Corner Phase Bottom (Asymmetrical) 1000 0000
2.8%TH
1111 1111
2V
2.8%TH
Keystone, EW Inhibited
2V
Corner Phase Top (Asymmetrical) 1000 0000
2.8%TH
1111 1111
2.8%TH
2V
EW Inhibited 1000 0000 Keystone 1111 1111
2.0V
0.2Vpp
2.0V
0.2Vpp
20/46
STV2001
Function
Sub Address
Pin
Byte
Specification
Effect on Screen
EW Pin Cushion
EW Inhibited 1000 0000
2.0 V
1.0 V 2.0 V
1111 1111
1000 0000 H Amplitude 1111 1111
0000 0000 H Phase 0111 1111
2.5V
2.5V
Parallelogram Inhibited Side Pin Ballance Control 1000 0000
3.7 V 1.4%
1111 1111
3.7 V
1.4%
SPB Inhibited Parallelogram Control 1000 0000
3.7 V 1.4%
1111 1111
3.7 V
1.4%
21/46
STV2001
Contrast Register (Video IN = 0.5VPP, Drive at maximum, I 2C Gainwin=1)
Hex b7 0 0 0 0 0 0 0 0 0 0 b6 0 0 0 0 0 0 0 1 1 1 b5 0 0 0 0 0 0 1 0 0 1 b4 0 0 0 0 0 1 0 0 1 1 b3 0 0 0 0 1 0 0 0 1 1 b2 0 0 0 1 0 0 0 0 0 1 b1 0 0 1 0 0 0 0 0 1 1 b0 0 1 0 0 0 0 0 0 0 1 Vpp 0 0.015 0.031 0.062 0.125 0.25 0.5 2 2.812 4 G(dB) -30 -24 -18 -12 -6 0 12 15 18 X POR
Brightness Register (Drive at maximum)
Hex b5 0 0 0 0 0 0 1 0 0 1 1 b4 0 0 0 0 0 1 0 0 0 0 1 b3 0 0 0 0 1 0 0 0 0 1 1 b2 0 0 0 1 0 0 0 0 0 1 1 b1 0 0 1 0 0 0 0 0 0 0 1 b0 0 1 0 0 0 0 0 0 0 1 1 Vpp 0 0.010 0.020 0.040 0.08 0.16 0.32 0.64 1.28 1.8 2.56 X POR
Drive1, Drive2, Drive3 Registers (Video IN = 0.5VPP, Contrast at maximum, I2C Gainwin=1)
Hex 00 01 02 04 08 10 20 40 80 B4 FF b7 0 0 0 0 0 0 0 0 1 1 1 b6 0 0 0 0 0 0 0 1 0 0 1 b5 0 0 0 0 0 0 1 0 0 1 1 b4 0 0 0 0 0 1 0 0 0 1 1 b3 0 0 0 0 1 0 0 0 0 0 1 b2 0 0 0 1 0 0 0 0 0 1 1 b1 0 0 1 0 0 0 0 0 0 0 1 b0 0 1 0 0 0 0 0 0 0 0 1 Vpp 0 0.015 0.031 0.062 0.125 0.25 0.5 1 2 2.812 4 G(dB) -30 -24 -18 -12 -6 0 6 12 15 18 X POR
22/46
4
STV2001
Vertical Blanking Output DC voltage
Hex b5 0 0 0 0 0 0 1 0 0 1 1 b4 0 0 0 0 0 1 0 0 0 1 1 b3 0 0 0 0 1 0 0 0 0 0 1 b2 0 0 0 1 0 0 0 0 0 1 1 b1 0 0 1 0 0 0 0 0 0 0 1 b0 0 1 0 0 0 0 0 0 0 0 1 4.5 X Output dc 1.0 POR
23/46
STV2001
14 - OPERATING DESCRIPTION SCANNING PART
14.1 - GENERAL CONSIDERATIONS 14.1.1 - Power Supply Typical power supply voltages are 10.5 V for the Deflection and Preamplifier sections (SAV CC, VAV CC and PVCC) and 5.0 V for the logic section (Vdd). Optimum operation is obtained between 9.5 and 11.5 for VCC, and between 4.5 and 5.5 V for VDD. VCC is monitored during the transient phase when switched either on or off, to avoid erratic operation of the circuit. If V CC is inferior to 5.0 V typ., the circuit outputs are inhibited. Similarly, before VDD reaches 4 V, all the I2C registers are reset to their default value (see I2C Control Table). The circuit is internally supplied by several voltage references (typ. value: 8 V) to ensure a good power supply rejection. Two of these voltage references are externally accessible respectively for the vertical and horizontal parts. They can be used to bias external circuitry if ILOAD is inferior to 5 mA. To minimize the noise and consequently the "jitter" on vertical and horizontal output signals, the reference voltages must be filtered by external capacitors connected to the ground. To further improve the jitter on both vertical and horizontal sections, FCAP and FILTER pins are used to filter the internal 5V regulator with external decoupling capacitors. 14.1.2 - I2C Control STV2001 belongs to the I 2C-controlled device family. Each adjustment can be made via the I2C Interface, instead of being controlled by DC voltages on dedicated control pins. The I 2C bus is a serial bus with a clock and a data input. General function and bus protocol are specified in the Philips-bus data sheets. The interface (Data and Clock) is TTL-compatible. Spikes up to 50 ns are filtered by an integrator and the maximum clock speed is limited to 100 kHz. The data line (SDA) can be used bidirectionally. In read mode, the IC sends reply information (1 byte) to the micro-processor. The bus protocol prescribes a full-byte transmission in all cases. The first byte after the start condition is used to transmit the IC address (hexa 8C for write, 8D for read). All bytes are sent MSB bit first and the write data transfer is closed by a stop. 14.1.3 - Write Mode In write mode, the second byte contains the subaddress of the selected function to adjust (or controls to effect) and the third byte the corresponding data byte. More than one data byte can be sent to the IC. If after the third byte no stop or start condition is detected, the circuit automatically increments the momentary subaddress in the subaddress counter (auto-increment mode) by one. Thus it is possible to immediately transmit the following data bytes without sending the IC address or subaddress. This can be useful for reinitializing all the controls very quickly (flash manner). This procedure is ended with a stop condition. There are 22 adjustment capabilities for the circuit: 3 for the horizontal part, 3 for the vertical, 3 for the E/W correction, 2 for the dynamic horizontal phase control, 5 for the preamplifier, 4 for the corners, 2 for EHT compensation and 1 for the blanking DC. 14 bits are also dedicated to several controls (ON/ OFF). 14.1.4 - Read Mode In the read mode the second byte transmits the reply information. The reply byte contains the horizontal and vertical lock/unlock status, the XRAY activation status. A stop condition always stops all the activities of the bus decoder and switches both the data and clock line (SDA and SCL) to high impedance. See I2C subaddress and control tables. 14.1.5 - Sync Processor The internal sync processor allows the device to receive separate horizontal & vertical TTL-compatible sync signals. 14.1.6 - IC Status The IC informs the MCU about both the 1st horizontal PLL (locked or not) and the XRAY protection (activated or not). The XRAY internal latch is reset either directly via the I2C interface or by decreasing the VCC supply. 14.1.7 - Sync Inputs Both HIN and VIN inputs are TTL compatible triggers with hysterisis to avoid erratic detection. Both inputs include a pull-up resistor connected to VDD. Synchro pulses must be positive.
24/46
5
STV2001
14.1.8 - Sync Processor Output The sync processor indicates whether 1st PLL is locked to an incoming horizontal sync or not. This is indicated on the D8 bit of the status register . PLL1 level is low when locked. 14.2 - HORIZONTAL PART 14.2.1 - Internal Input Conditions A digital signal (horizontal sync pulse) is sent by the sync processor to the horizontal input. It must be positive (see Figure 5). Synchronization occurs on the leading edge of the internal sync signal. The minimum value of Z is 0.7 s. Vertical synchro extraction is not allowed. Figure 5.
(VCO). The phase comparator is a "phase frequency" type designed in CMOS technology. This kind of phase detector avoids locking on wrong frequencies. It is followed by a "charge pump", composed of two current sources: sunk and sourced (typically I =1 mA when locked and I = 40 A when unlocked). This difference between lock/unlock allows smooth catching of the horizontal frequency by PLL1. This effect is reinforced by an internal original slow down system when PLL1 is locked, preventing the horizontal frequency from changing too quickly. The dynamic behaviour of PLL1 is fixed by an external filter which integrates the current of the charge pump. A "CRC" filter is generally used (see Figure 6). One bit I2C Ipump is used to set the pump current to 1mA or 0.3mA in locked condition. Figure 6. PLL1F 40
Z T 1.8k 4.7F 10nF
14.2.2 - PLL1 The PLL1 consists of a phase comparator, an external filter and a voltage-controlled oscillator Figure 7. Block Diagram &
Lock/Unlock Status I2C Ipump LOCKDET High 1 COMP1 Low CHARGE PUMP
PLL1F 40
R0 41
C0 42 FC1 43
VCO OSC IC HPOS Adj.
2
44 FILTER
PHASE ADJUST
25/46
STV2001
Figure 8. Details of VCO
I0 I0 PLL1F 40 (Loop Filter) 41 (1.4V1.6V 0 0.875TH TH 6.4V
2
6.4V
RS FLIP FLOP
1.6V
The VCO uses an external RC network. It delivers a linear sawtooth resulting from the capacitor charge and discharge . The current is proportional to the one in the resistor. Typical thresholds for the sawtooth are 1.6 V and 6.4 V. The VCO control voltage varies between 3.0 V and 3.8 V (see Figure 8). This VCO frequency range is very small. The small effective frequency is due to clamp intervention on the lowest filter value. The PLL1F filter voltage is set by a 4-bit DAC with a voltage range of 3.0 to 3.8 V. The sync frequency must always be higher than the free running frequency. For example, when using a 60 kHz synchro range, the suggested free running frequency is 56 kHz. Figure 9. PLL1 Timing Diagram
H O SC Sawtooth 7/8 TH 1/8 TH
PLL1 ensures the coincidence between the leading edge of the sync signal and a phase reference resulting from the comparison of: - the VCO sawtooth - an internal DC voltage I2C adjustable within the range of 2.9V to 4.2V (corresponding to 10%) (see Figure 9). A Lock/Unlock identification block, also included, detects in real time whether PLL1 is locked on the incoming horizontal sync signal or not. The lock/unlock information is available through the I2C read. The FC1 Pin (Pin 43) is used for decoupling the internal 6.4 V reference by a capacitor.
6.4V 3.4V (Reference for H Position) Vb (2.8VPhase REF1 is obtained by comparison between the sawtooth and a DC voltage adjustable between 2.9 V and 4.2 V. The PLL1 ensures the exact coincidence between the signal phase REF and HSYNC. A 10% TH phase adjustment is possible around the 3.5V point.
26/46
STV2001
14.2.3 - PLL2 PLL2 ensures a constant position of the shaped flyback signal in comparison with the sawtooth of the VCO, taking into account the saturation time Ts (see Figure 10). Figure 10. PLL2 Timing Diagram H Osc Sawtooth 7/8TH 1/8TH 6.4V 4.0V 1.6V
Flyback Internally Shaped Flyback H Drive Ts Duty Cycle The phase comparator of PLL2 (phase type comparator) is followed by a charge pump (typical output current: 0.5 mA). VBCAP pin is used to filter noise on PLL2 top comparator via an external capacitor. The flyback input consists of an NPN transistor. This input must be current driven. The maximum recommended input current is 5 mA (see Figure 11). Figure 11. Flyback Input Electrical Diagram 400
HFLY 36 20k Q1
set) is 85% in order to avoid having too long a conduction period of the horizontal scanning transistor. The maximum storage time (Ts Max.) is : 0.44TH- TFLY/2). Typically, TFLY/TH corresponds to around 20 % which means that Ts max represents approxim tively 34 % of TH. 14.2.4 - Output Section The H-drive signal is sent to the output through a shaping stage which also controls the fixed Hdrive duty cycle (see Figure 10). In order to secure the scanning power part operation, the output is inhibited in the following cases : -when VCC is too low, -when the ABL protection is activated, -during the Horizontal flyback, -when the HDrive I2C bit control is off. The output stage consists of a NPN bipolar transistor. Only the collector is accessible (see Figure 12). Emitter is connected directly to a separate ground pin. Figure 12.
V CC
34 Hout
33 HDGND This output stage is intended for "reverse" base control, where setting the output NPN in off-state will control the power scanning transistor in offstate. The maximum output current is 15 mA, and the corresponding voltage drop of the output VCEsat is 0.4 V Max. Obviously, the power scanning transistor cannot be directly driven by the integrated circuit. An interface either bipolar or MOS type has to be added between the circuit and the power transistor.
GND 0V
The duty cycle is fixed at 55%. For a safe start-up operation, the initial duty cycle (after power-on re-
27/46
STV2001
14.2.5 - X-RAY Protection X-Ray protection is activated when the ABL input (1 V on Pin 20) is at a low level. It inhibits both H-Drive, and Vout while Video goes into off-mode. This activation is internally delayed by 2 lines to avoid erratic detection (short parasitics). This protection is latched; it may be reset either by switching V CC off or by I2C (see Figure 13). Figure 13. Safety Functions Block Diagram
VCC Checking
I2C Drive on/off HORIZONTA L OUTPUT INHIBITION I2C Ramp on/off VERTICAL OUTPUT INHIBITION
+1V
VCC VSCinh
XRAY Protection
+
ABL 20
VCC off or I2C Reset
S R
Q
Horizontal Flyback 0.7V
Video-off
14.3 - VERTICAL PART 14.3.1 - Function When the synchronization pulse is not present, an internal current source sets the free running frequency. For an external capacitor, COSC = 150nF, the typical free running frequency is 100Hz. The typical free running frequency can be calculated according to: 1 fo(Hz) = 1.5 . 10-5 . COSC A positive TTL level pulse applied on Pin 2 (Vin) is used to synchronize the ramp in the range [fmin, fmax] (see Figure 14). This frequency range depends on the external capacitor connected on Pin 6 (VCAP). A 150nF ( 5%) capacitor is recommended for 50 Hz to 165 Hz applications. The typical maximum and minimum frequency, at 25oC and without any correction (S correction), can be calculated as follows: f(Max.) = 3.5 x fo and f(Min.) = 0.33 x fo When an S correction is applied, these values are slightly modified. With a synchronization pulse, the internal oscillator is synchonized immediately but its amplitude changes. An internal correction then adjusts it in less than half a second. The ramp top value (Pin 6) is sampled on the AGC capacitor (Pin 4) at each clock pulse. A transconductance amplifier modifies the charge current of the capacitor so as to make the amplitude constant again. We recommend using an AGC capacitor with a low leakage current. A value lower than 100nA is mandatory. A good level of stability for the internal closed loop is obtained by a 470nF 5% capacitor value on Pin 4 (VAGC). VRB (Pin 8) is used for decoupling the internal 2V reference voltage by a capacitor. 14.3.2 - I2C Control Adjustments S correction shapes can then be added to this ramp. This frequency-independent S correction is generated internally. Its amplitudes is adjustable via the I2C. S correction can be inhibited by applying the selected bits. Finally, the amplitude of the S corrected ramp is adjustable via the vertical ramp amplitude control register.The adjusted ramp is available on Pin 7 (VOUT) to drive an external power stage.
28/46
STV2001
The gain of this stage can be adjusted ( 25%) depending on its register value. The mean value of this ramp is driven by its own I2C register (vertical position) with : VPOS = 7/16 x VREF-V = 300 mV. Figure 14. AGC Loop Block Diagram
Usually VOUT is sent through a resistive divider to the inverting input of the booster. Since VPOS derives from VREF-V, the bias voltage sent to the noninverting input of the booster should also derive from VREF-V to optimize the accuracy (see Figure 14).
CHARGE CURRENT
TRANSCONDUCTANCE AMPLIFIER REF
6 4 DISCH. VSYNCIN OSC CAP SAMPLING SAMPLING CAPACITANCE
2
SYNCHRO
OSCILLATOR
S CORRECTION VS AMP SUB0A/7bits Vlow 24 BREATH
Sawth Disch.
VERT AMP SUB08/7bits VPOSITION SUB09/7bits
I2C sub14 /6bits
7
VOUT
14.3.3 - Basic Equations As a first approximation, the amplitude of the ramp on Pin 7 (VOUT) is calculated as follows:
VOUT - VPOS = (VOSC - VDCMID) x (1 + 0.25 (VAMP))
where : VDCMID = 7/16 x VREF (middle value of the ramp on Pin 5, typically 3.6V) VOSC = V5 (ramp with fixed amplitude) VAMP = -1 as minimum vertical amplitude register value and +1 as maximum value. VPOS is calculated according to: VPOS = VDCMID + (0.4x V P ) where VP = -1 and +1 as respectively minimum and maximum vertical position register value. The current available on Pin 6 is: 3 x VREF x C OSC x f IOSC = 8 where COSC = capacitor connected on Pin 6 f = synchronization frequency.
14.3.4 - Geometric Corrections The principle is represented in Figure 15. Starting from the vertical ramp, a parabola-shaped current is generated for E/W correction (also known as Pin Cushion correction), dynamic horizontal phase control correction. The parabola generator consists of an analog multiplier, the output current of which is equal to : I = k x (VOUT - VDCMID )2 where VOUT is the vertical output ramp (typically between 2 and 5 V) and VDCMID is 3.6 V (for VREF-V = 8.2V). The VOUT sawtooth is typically centered on 3.6 V. By changing the vertical position, the sawtooth shifts by 0.4 V. The "geometry tracking" feature ensures a correct screen geometry for any end user adjustment. It generates non-symmetric parabola dependent on the vertical position. To avoid Vertical EHT compensation (VBreathing) from affecting the geometry correction, an additional Buffer Amplifier is used for VBreathing.
29/46
STV2001
Due to the large output stage voltage range (E/W Pin Cushion, Keystone), the combination of the tracking function, maximum vertical amplitude, maximum or minimum vertical position and maximum gain on the DAC control may lead to output stage saturation. This must be avoided by limiting the output voltage with appropriate I 2C register values. For the E/W part and the dynamic horizontal phase control part, a sawtooth-shaped differential current in the following form is generated: I' = k' . (VOUT - VDCMID). Then I and I' are added and converted into voltage for the E/W part.
Each of the two E/W components or the two dynamic horizontal phase control components may be inhibited by their own I2C select bit. EW output voltage is available at EWout pin directly. External buffer circuit is required to drive Darlington pair transistor, which is sinking the DIODE MODULATOR current in order to achieve EW correction. Additionally, an I2C controlled DC shift is used for H-width. The dynamic horizontal phase control drives the H-position internally, moving the HFLY position on the horizontal sawtooth in the range of 2.8 %TH both for side pin balance and parallelogram.
30/46
STV2001
Figure 15. Geometric Corrections Principle
VPOS VAMP VOSC 3.5V VDCMID VDFocus I-V EWAMP 1 R X
2
From VBreath VOUT VOUT
7
23
3.5V
Keystone
3.5V
EWDC X2
EWOUT + Corner Top I-V
27
3.5V
1 R
Corner Bot.
Corner Top
3.5V
1 R
X2
Corner Bot.
S.P.B.
+
To Horizontal Phase
Parallelog. 3.5V
31/46
STV2001
14.3.5 - E/W EWOUT = EW DC + K1 (VOUT - VDCMID) +K2 (VOUT - VDCMID)2 K1 is adjustable via the keystone I2C register. K2 is adjustable via the E/W amplitude I2C register. 14.3.6 - Dynamic Horizontal Phase Control IOUT= K4 (VOUT - VDCMID) + K5 (VOUT - VDCMID)2 K4 is adjustable via the parallelogram I 2C register. K5 is adjustable via the side pin balance I2C register. Corner Phase Top and Corner Phase Bottom cor14.3.7 - Vertical Dynamic Focus rections add a half parabola current to the HoriVertical Dynamic Focus waveform is available on zontal Phase. Top and Bottom Corrections can be Pin 23. It is the parabolic waveform with downadjusted separately by I2C with 7 Bits DAC. wards concavity, at vertical frequency. Its amplitude is fixed at 1 Vpp. 14.3.9 - Horizontal Breathing 14.3.8 - Corner Correction Horizontal breathing is performed through the EW stage with V-I Converter and an I2C controlled varThere are 4 types of corner correction in the deiable gain stage. This DC controlled input provides vice: EW Corner Top, EW Corner Bottom, Corner the Horizontal Width correction required to offset Phase Top and Corner Phase Bottom. EW Corner width changes due to EHT variation. Gain attenuTop and EW Corner Bottom are used to modulate ation is set by a 7 bits DAC with I2C. the EW amplitude. Corner Phase Top and Corner Phase Bottom are used to modulate the Horizontal 14.3.10 - Vertical Breathing Phase. These 4 types of correction are used to Vertical breathing compensation is performed compensate the distortion appearing at the corthrough gain modulation of the vertical ramp. This ners of the CRT. DC-controlled input allows the vertical height corEW Corner Top and EW Corner Bottom correcrections needed to offset height changes due to tions add a half parabola current to the EW voltEHT variations. Input is received at the output of age. Since the E/W output voltage range is limited, the EHT compensation Amplifier. Gain attenuation it was necessary to add EW Corner Correction to is set by 6 Bits DAC via I2C. decrease both EW amplitude and Keystone by I2C.
PRE-AMPLIFIER PART
14.4 - GENERAL CONSIDERATIONS 14.4.1 - Input Stage The R, G and B signals must be supplied to the three inputs through coupling capacitors (100nF). The maximum input peak-to-peak video amplitude is 1 V. Figure 16. . The input stage includes a clamping function. This clamp uses the input serial capacitor as "memory capacitor" and is gated by an internally generated "Back-Porch-Clamping-Pulse (BPCP)". The BPCP is synchronized on the second edge of the horizontal pulse HIN inputs on Pin 1.
HSYNC
BPCP
Internal pulse width is fixed at 1s In both cases, BPCP width is fixed.
32/46
STV2001
14.4.2 - Contrast Adjustment (7 bits) The contrast adjustment is made by simultaneously controlling the gain of three internal variable gain amplifiers through the I2C bus interface. The contrast adjustment allows covering a range higher than 40 dB. This adjustment is refreshed during the vertical retrace time. 14.4.3 - ABL Control The STV2001 has an ABL input (automatic beam limitation) to attenuate RGB video signals according to beam intensity. The operating range is typically 2.5 V, from 5.3 V to 2.8 V. A typical 12 dB Max. attenuation is applied to the signal whatever the current gain. Refer to Figure 16 for ABL input attenuation range. In the case of software control, the ABL input must be pulled to AVCC through a resistor to limit power consumption. ABL input voltage must not exceed VAVCC. Input resistor is 10k. Figure 17.
2 0 -2 -4 -6 -8 -10 -12 -14 1 2 3 4 5 6 7 VIN(V) 8 9 Attenuation (dB)
14.4.4 - Brightness Adjustment (6 bits) As with contrast adjustment, brightness is controlled by I 2C.
The brightness function consists of adding the same DC offset to the three R, G, B signals after contrast amplification. This DC-Offset is present only outside the blanking pulse (see Figure 19). The DC output level is forced to "INFRA-BLACK" level (VDC) during the blanking pulse. 14.4.5 - Drive Adjustment (3 x 8 bits) To adjust the white balance, the device offers the possibility of separately adjusting the overall gain of each complete video channel. Each channel gain is controlled by I2C (8 bits each). The very large drive adjustment range (48dB) allows different standard or custom color temperatures. The drive adjustment is also used to adjust the output voltages at the optimum amplitude to drive the C.R.T drivers, keeping the whole contrast control for end-users only. The drive adjustment is made after the contrast and brightness so that the white balance remains correct when BRT is adjusted. 14.4.6 - Output Stage The three output stages (see Figure 18) incorporate three functions: * The blanking stage: when the internal generated blanking pulse is high, the three outputs are switched to a voltage which is 400 mV lower than the BLACK level. The black level is the output voltage with minimum brightness when the input signal video amplitude is equal to "0". * The output stage itself: a large bandwidth output amplifier which can deliver up to 5VPP on the three outputs (for 0.7 V video signal on the inputs). * The output CLAMP: the IC also incorporates three internal output clamps (sample and hold system) to fix the "INFRA-BLACK" level (VDC) at 1.1V during blanking. The overall waveforms of the output signal according to the different adjustments are shown in Figure 19. and Figure 20.
33/46
STV2001
Figure 18.
10
Vout
CRT Driver
S/H
1.5V
STV2001
Figure 19. Waveforms VOUT, BRT, CONT HSYNC BPCP BLK Video IN VOUT1, VOUT2, VOUT3 VCONT (4) CONT VBRT (3) VBLACK (2) VDC (1) BRT 0.4V fixed
Note : 1. VDC = 1.5V 2. VBLACK = VDC + 0.4V 3. VBRT = VBLACK + BRT (with BRT = 0 to 2.5V) 4. VCONT = VBRT + CONT with CONT = k x video (CONT = 5VPP max. for VIN = 0.7VPP)
34/46
STV2001
Figure 20. Waveforms (DRIVE adjustment)
HSYNC BPCP HFly Video IN
VOUT1 , V OUT2 , VOUT3 VCONT
VBRT
two examples of drive adjustment (1) Note : 1. Drive adjustment modifies the following voltages : VCONT, VBRT. . Drive adjustment does not modify the following voltages : VDC and VBLACK. VDC
VBLACK
14.4.7 - Bright Window Contrast Gain can be increased by 1.5X when the I2C command "GainWin" is issued or GWIN (Pin 16) pulse value reaches its Turn-ON threshold. Bright Window gain can be controlled separately by I2C command or pulse voltage at "GAINWIN" pin. Although both controls are independent, max gain is still limited to 1.5x, not 1.5x + 1.5x. 14.4.8 - Blanking Generator A vertical blanking pulse is generated (see Figure 21). The output level is a positive going pulse of 9.5V. The vertical blanking is started
by the vertical sync pulse and by the falling edge of VFly pulse. If there is no VFly pulse (VFly>6.5V), the vertical blanking the vertical blanking start coincides with the beginning of the vertical capacitor discharge time. The blanking output generates a superimposed variable DC voltage. The 6-bit adjustment range is 1 V to 4.5 V. This is used to allow brightness control through G1. Additionally, this pin is used for spot killer suppression. The 0.8 V of Vcc threshold will trigger the output into a high level state resulting from the Vcc decay.
Figure 21. VBDC (Pin 18) Output Voltage Waveform
DC level controlled by 6-bit DAC
9.5V 4.5 V 1.0 V
35/46
STV2001
Table 1:
Logic Table
Hout no yes yes no yes on/off yes yes yes yes Vout no yes yes no yes yes on/off yes yes yes Video-off video-off video-off video-off video-off video-off on/off on/off on/off video-on (2) video-on (2) Low Power NA (1) NA(1) no no no no no no NA (1) no
Conditions Vcc at 0 to 6.9 V (PD2 mode) Vcc at 6.9 V to 8.5 V (PD1 mode) Hlock/unlock detection = unlock Video ABL input pin < 1 V 5 V POR or I2C POR=1, (default=0) I2C Hout on/off, (default=1=on) I2C Vout on/off, (default=1=on) I2C Video on/off, (default=0=video-off) Vcc at >8.5 V Vcc at >8.5 V, I2C video=1=on Note 1 NA= Not applicable. Note 2 I2C video=on will be reset by Low Vcc.
STAND-BY MODE AND PROTECTIONS
14.5 - GENERAL CONSIDERATIONS 14.5.1 - POR (Power On Reset) - Subad. 11-D8 POR is activated on 5 V with default values for each adjustment and in addition video off (see 1.3). It can be activated via the I 2C command. 14.5.2 - Supply Voltage Threshold. Two built-in thresholds (see figure 21) are used to enter the following modes: * PDI mode: - Activated for Vcc < 8.5V - Video off (see 1.13) * PD2 mode: - Activated for Vcc < 5.0V - Video off (see 1.13) - HOUT and VOUT disabled 14.5.3 - Video Off (I2C control) - Subad. 00-D8 Activates blanking of the 3 video output stages. During this time the outputs are switched to VDC level, regardless of the presence of Hsync or Hflyback. Activation time is inferior to 1s. This also activates the blanking output at pin 18 into a high level state close to 9.5V as long as "video off" is activated. When the device enters the "Video-off" mode, voltage on pin 8 is 8V. 14.5.4 - Vertical Output Off This command will switch off output VAMP. The vertical output swing is reduced to 0V. 14.5.5 - X-Ray, Set Operation - Subad. 09-D8 When ABL voltage is below 1 V threshold, Xray latch will be activated. This I2C command will reset the Xray latch. Activation time below 100ms.
36/46
STV2001
15 - INTERNAL SCHEMATICS
Figure 22. Figure 25.
VDD 200k
SAVCC
200 1,2
Vgnd
5
Figure 23.
SAVCC
Figure 26.
SAVCC
VCAP 6
Vref 3 22k
Figure 24.
Figure 27.
SAVCC
SAVCC
VAGCCAP
4
VOUT 7
37/46
6
STV2001
INTERNAL SCHEMATICS (continued)
Figure 28. Figure 31.
SAVCC Vref R1 VRB 8 R2
AGND 11 VAVCC
Figure 29.
Figure 32.
VAVCC 9 12V BIPSWITCH
PGND 13
AGND
Figure 30.
Figure 33.
PVCC VAVCC
VAVCC
Pins 10, 12, 14
PVCC
15
Agnd Pgnd
38/46
STV2001
INTERNAL SCHEMATICS (continued)
Figure 34. Figure 37.
VAVCC
VAVCC
Internal 5V
10k GainWin 16 ABLin 20
Agnd
Agnd
10k
Figure 35.
Figure 38.
VAVCC
SAVCC
VCC 8V
Pins 17 19 21
IN
VFLYIN 22 Agnd
AGND Agnd
Figure 36.
Figure 39.
SAVCC
VAVCC
8V
VFOCUS VBDC 18 23
20 k
LGND
39/46
STV2001
INTERNAL SCHEMATICS (continued)
Figure 40. Figure 43.
SAVCC
SAVCC Vref
1.5k
V BREATH
24
EWout 27 10k
Figure 41.
SAV CC 60K HBreath 25 Vref
Figure 44.
VDD 28 5V BIPSWITCH
Figure 42.
SAVCC
Figure 45.
VDD 5V FCAP 26 SDA 29
10K
Internal 5V LGND
40/46
STV2001
INTERNAL SCHEMATICS (continued)
Figure 46. Figure 49.
SAVCC VDD 5V HOUT 34
10k SCL 30
HDGND 33
Figure 47.
Figure 50.
SAVCC
SAVCC 31
12V Bipswitch
Href
35 22k
Figure 48.
Figure 51.
Href 35
SAVCC
Lgnd 32
HFLY 36
41/46
STV2001
INTERNAL SCHEMATICS (continued)
Figure 52. Figure 55.
SAVCC Href
PLL1F 40
Hgnd 37
Figure 53.
SAVCC
Href
Figure 56.
SAVCC Href 35
PLL2C 38
42
Figure 54.
Figure 57.
Href Href 35 SAVCC
SAVCC
41
VBCAP 39
Lgnd
42/46
STV2001
INTERNAL SCHEMATICS (continued)
Figure 58. Figure 59.
SAVCC 1K _ 3 FC1 43 4K _ 3
FILTER
SAVCC
Href
44
43/46
C5 4u7
820p
47u C9
100n C8
100n
6490 R2 1K8
C3 C4 10n C6 R33 1K Vcc Hout 7 NQA C28 100n C29 100u R34 560 D1 1N4148 Vcc (10.5V) 8 GND QB 10 NQB 9 R38 10K 6 QA N1B 11 C31 10u Vcc 5 N1A 1B 12 4 1A CDB 13
C7 22n
C2
C1
1n* 44 43 42 41 40 39 38 37 36 35 34
C0 R0 Hfly FC1 PLL1F VBCAP PLL2C Hgnd Href
Hout HDGND33 LGND 32 SAVCC 31 SCL 30 SDA 29
FILTER
1 Hin
C10 100n
2 Vin
C11 47u
3 Vref
C12
470n
4 VAGCCAP
Figure 60. Demonstration board schematic
5 Vgnd
R1
In1
In2
PGND
Out3
PVCC
GANWIN
VBDC
ABLin
OUT1 C21 100u Vcc C20 100n
R20 25K
OUT3
C22 100n
R11 1K
R10 1K
R12 1K
R21 10K
R22 1K
R24 1K
R26 10K
R28 1K
Vcc IN1 IN2 IN3
R13 75
R23 10K
R25 10K
R27 10K
R14 75 R15 75 R16 75
R29 10K
L1 10uH
R17 47 R19 47
R18 47
C24 100n
OUT2
C23 100n
44/46
C30 33p HFLY R35 10K Vcc VCC 16 TB1 15 TB2 14 Width C35 47p Delay HREF Vcc R37 10K 3 CDA Vcc R36 47K C33 10u C34 100n R39 47K MC14528 C32 1 TA1 47p 2 TA2 C36 33p
VDD 28 EWout 27
STV2001
HIN
VIN
1u
C13 150n
6 VCAP C26 100n C25 1u EW R32 10K C27 100u
VOUT R5 12K
FCAP 26
STV2001
+5V
+5V R40 4K7 R41 4K7 5V R42 100 SDA R43 100 C37 22p C38 22p SCL GND
7 Vout
C14 100n
HBRTHin 25 VBRTHin 24 VFOCUS 23 IN3 VFLYIN
Vcc
L3 10uH
8 VRB
9 VAVCC
C18 100u
C19 100n R31 10K VFOCUS Vfly in R30 10K
10 Out1
11 Agnd
Out2
12 13 14 15 16 17 18 19 20 21 22
STV2001
16 - PACKAGE MECHANICAL DATA
TQFP 44 L SLUG DOWN BODY
A A2
A1
B Slug down
C
K D D1 D3 33 23 22 L L1
34 S1
44 Pin 1 Identification
12 1 S e 11
Dimensions A A1 A2 B c D D1 D3 e E E1 E3 H L L1 S S1 K Min. 1.420 0.065 1.360 0.325 11.900 9.975 7.950 0.750 11.900 9.975 7.950 5.840 0.450 0.938 6.000 6.000 1.5d
Millimeters Typ. 0.100 1.400 0.350 12.000 10.000 8.000 0.800 12.000 10.000 8.000 5.890 1.000
E3 E1 E
H
Max. 1.540 0.135 1.440 0.375 0.165 12.100 10.025 8.050 0.850 12.100 10.025 8.050 5.940 1.063 6.100 6.100 5.5d
Min. 0.056 0.003 0.054 0.013 0.469 0.393 0.313 0.030 0.469 0.393 0.313 0.230 0.018 0.037 0.236 0.236 1.5d
Inches Typ. 0.004 0.055 0.014 0.472 0.394 0.315 0.031 0.472 0.394 0.315 0.232 0.039
Max. 0.061 0.005 0.057 0.015 0.006 0.476 0.395 0.317 0.033 0.476 0.395 0.317 0.234 0.042 0.240 0.240 5.5d
3.5d
3.5d
45/46
7
STV2001
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics (c)2000 STMicroelectronics - All Rights Reserved.
Purchase of I2C Components by STMicroelectronics conveys a license under the Philips I2C Patent. Rights to use these components in an I2C system is granted provided that the system conforms to the I 2C Standard Specification as defined by Philips. STMicroelectronics Group of Companies Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com
46/46
8


▲Up To Search▲   

 
Price & Availability of STV2001

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X